Galois Module Structure of the Integers in Wildly Ramified Cyclic Extensions
نویسندگان
چکیده
منابع مشابه
Factorisability and the arithmetic of wildly ramified Galois extensions
© Université Bordeaux 1, 1989, tous droits réservés. L’accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier do...
متن کاملOn the Modularity of Wildly Ramified Galois Representations
where GQ = Gal ( Q/Q ) is the absolute Galois group of Q and ` is a fixed rational prime. For example, ρ = ρE,` may be the `-adic representation of an elliptic curve E over Q, or ρ = ρf may be the `-adic representation associated to a modular form. The continuity of such Galois representations implies the image lies in GL2(O) for some ring of integers O with maximal ideal λ in a finite extensio...
متن کاملOn the Relative Galois Module Structure of Rings of Integers in Tame Extensions
Let F be a number field with ring of integers OF and let G be a finite group. We describe an approach to the study of the set of realisable classes in the locally free class group Cl(OF G) of OF G that involves applying the work of the second-named author in the context of relative algebraic K theory. For a large class of soluble groups G, including all groups of odd order, we show (subject to ...
متن کاملGALOIS MODULE STRUCTURE OF GALOIS COHOMOLOGY FOR EMBEDDABLE CYCLIC EXTENSIONS OF DEGREE p
Let p > 2 be prime, and let n,m ∈ N be given. For cyclic extensions E/F of degree p that contain a primitive pth root of unity, we show that the associated Fp[Gal(E/F )]-modules H(GE , μp) have a sparse decomposition. When E/F is additionally a subextension of a cyclic, degree p extension E/F , we give a more refined Fp[Gal(E/F )]-decomposition of H (GE , μp).
متن کاملGALOIS MODULE STRUCTURE OF pTH-POWER CLASSES OF CYCLIC EXTENSIONS OF DEGREE p
In the mid-1960s Borevič and Faddeev initiated the study of the Galois module structure of groups of pth-power classes of cyclic extensions K/F of pth-power degree. They determined the structure of these modules in the case when F is a local field. In this paper we determine these Galois modules for all base fields F .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1994
ISSN: 0022-314X
DOI: 10.1006/jnth.1994.1031